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ANISOTROPIC NONLINEAR STRESS-STRAIN LAWS
AND YIELD CONDITIONS

H. NEUBER
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Abstract—Nonlinear stress-strain laws and yield conditions are derived for anisotropic materials on the basis of
one, two and three invariants.

1. INTRODUCTION

THis investigation concerns nonlinear stress—strain laws describing reversible or irreversible
deformations of homogeneous anisotropic materials beyond the linear elastic range.
For statically indeterminate problems such stress—strain laws give a suitable foundation
for the calculation of effects caused by deviations from Hooke’s law. An important effect
of such kind arises for example in stress concentration problems (called by the author
“macro-support effect”, Neuber [28]) and leads to a considerable decrease of stress con-
centration even for small deviations from Hooke’s law. Similar effects occur in crack
propagation problems (Hutchinson [29]).

The nonlinear anisotropic stress—strain laws derived here are based on one, two and
three invariants. Thermal effects may be absent. By means of the invariants introduced,
yield conditions and incremental stress-strain laws for anisotropic materials are also
established.

2. STRAIN ENERGY AND COMPLEMENTARY ENERGY
The strain energy density W and the complementary energy W are defined by
oW = Tkmékm’ 5W = ekmé'rkm. (1)

Here 1,,, denotes the stress tensor, ey, the strain tensor, the indices k, m and later n, p, g,
r, s, t are related to the Cartesian coordinates x, y, z, and the convention of summation
holds with regard to coincident indices in the same term, the sign & denotes variations of
the physical state. For materials without memory, W and W depend only on the values of
€m OF T4, (DOt on the history of loading) and, therefore, W and W are then potentials

Tim = OW/0Oeym, Ckm = aW/a‘fknr (2)

3. THE NONLINEAR ANISOTROPIC STRESS-STRAIN LAW WITH ONE
INVARIANT

The simplest possibility of describing the physically nonlinear deformation of homo-
geneous materials consists in the introduction of one invariant factor in the stress—strain
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relations depending on the strength intensity. This factor may be denoted by . For the
transition to Hooke’s law it may have the value 1. Then the nonlinear stress—strain relations
with anisotropy can be written in the following form:

Thm = \PEknmpenp‘

(3)

Here the tensor of rank four E,,,,, represents the tensor of elasticity. In consequence of the
supposed homogeneity this tensor is constant and satisfies the following conditions of
symmetry:

Ekmnp = Emknp = Ekmpn = Enpkm- (4)
Introducing (3) into (1) there follows
6W = l1”Ekmnpenpéekmv (SW = Ekmnpekmé('wbenp)- (S)
The quasi-Hookean strain energy density Wy may be represented in the form
Wy = %Ekmxpekmenw {6)
Now (5) leads to
SW+SW = 25(y Wyy), W+ W = 1 eim = 20 Wy. {8)

For materials with existing strain energy potential the deformation is reversible and the
factor ¥ is a function of Wy and satisfies the relation

dw
=2 9
4 dwy, ®)
If y is a given function of W, then Wy can be derived as a function of W by means of the
relation
Yoode
Wy = j B (10)
" e=0 Y(&)

The complementary energy W = 1,,.¢,, — W then can be derived without contradictions
as a function of W or Wy. The result shows that with an existing strain energy potential
the one-invariant theory is related to the strain energy density as the only possible governing
invariant characterising the strength intensity.

For irreversible deformations the strain energy potential does not exist and ¥ can be
a function of the three independent invariants

qsl == Akmekmy ¢2 = Bkmnpekmenpa ¢3 = Ckmupqrekmenpeqr' (ll)
Herein the tensor A,,, is symmetric in k and m, the tensor By, is symmetric with regard to
k and m, as well as n and p, and (k, m) and (n, p). The tensor of rank six is symmetric with

regard to k and m, nand p, g and r, and (k, m) and (n, p) as well as to (n, p) and (g, r). In the
isotropic case the tensor of elasticity Ey,,, is a bilinear combination of Kronecker-symbols

and has the form

E

. . 2v
Ekmnp = m [5knbmp + bmnékp +— akménp} ( 12}

1+v
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Here E is Young’s modulus and 1/v Poisson’s ratio. The three invariants then can be
introduced in the form

&1 = ew d2 = CimCiom> O3 = CmCmpCip- (13)

If for an isotropic material ¥ is to be determined by means of the uniaxial tension test
with the stress ¢ and the strain ¢ (in direction of ¢), there follow ¢ = yEe and Wy = E¢?/2.
Using a diagram with ¢ and E¢ as coordinates arctan y represents the angle between the
Ee-axis and the straight line leading from the origin to the point of the stress-strain line.
The quantity yE = E therefore can be called the secant-modulus. Because of its applicability
to the uniaxial tension test the one-invariant theory is suitable for approximative technical
strength calculations. The author used this theory to solve some stability problems of
nonlinear elastic continua (Neuber [21, 22, 24, 25)).

4. THE NONLINEAR ANISOTROPIC STRESS-STRAIN LAW WITH TWO
INVARIANTS

To have a more accurate representation of the nonlinear behaviour of materials two
governing invariants can be introduced. It is well known that with Hooke’s law for isotropy
the tensors of stress, strain, elasticity and the strain energy can be represented each by two
physically independent parts related to two governing invariants (the tensors of stress and
strain then are to be separated into sphere tensors and deviators). Here it will be proved,
that such a separation of the complete state into two physically independent states is possible
for anisotropy too. Furthermore, if the possibility of such separation can be assumed for
the nonlinear stress-strain law with two invariants then the theory can be represented in a
very elegant form which offers considerable simplifications because of the fact that each
of the two physically independent states follows a one-invariant theory. Index 1 may refer
to the first, index 2 to the second invariant ; then the following relations are to be satisfied

- . . . . 1 2 .
(, being a function of the first, ¥, a function of the second invariant, Eyp,, and Ey,,,, being
the constant tensors of elasticity of the two states of stress). Then the following conditions
are to be satisfied:

1 2 1 2
Tim = Tom + Thm» €im = Chmt+ Cpoms (14)
1 2

Ekmnp = Ekmnp + Ekmnpa (1 5)

1 1 1 2 2 2
Tim = lekmnpenp’ Tgm = ¢’2Ekmnpenps (16)
wal'f'sz, W=W1+W2, (17)
W+W = Wi+ W+ Wt Wy = Tinion = Tumliom + Tl (18)

The transition to Hooke’s law may be characterized by ¢, = , = 1. For separating

- . . .. 1 2
the strain tensor into its two parts the additional tensors of rank four ¢;,,,, and ¢,,,,, may be
1

introduced. In consequence of the supposed homogeneity these tensors, as well as Epunp
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2
and E,,,,, are constant and symmetric as Etmnp [se€ equation (4)]. Then the following
relations hold :

1 1 2 2
€np = CnpgrCyr, €np = CnparCer- (19)
With regard to equation (14) the condition

1 2 o
Cnpqr + cnpqr = 21_(5nq6pr + bnrapq)‘ (20)

must be satisfied. Now equation (16) can be written in the form

1 1 1 2 2 2
Tikm = l/l 1 Ekmnpcnpqreqr 5 Tiem = WZEkmnpcnpqreqr s (2l )

or using equation (20)

1 1 1 1 2 2
Tim = lekmnpcnpqr(cqrst +cqrsl)estv Tem = - .. (22)
The identity with equation (16) is guaranteed by the conditions
1 i 1 1 2

Ekmnpcnpqr = Ekmqr’ Ekmnpcnpqr = 0 (23)

. 1 1 . . .
Therefore by the algebraic operator c,,,, the tensor E\mnp 15 transformed into itself. The

second condition is identical with the first if equation (20) is applied. Considering %k,,, the
analogous conditions

2 2 2 2 1 »
Ekmnpcnpqr = Ekmqr’ Ekmqrcqrst =0 (24)

can be derived. Using equation (20) at the left hand side of equation (15) there follows

1 2 1 2
Ekmqr(cqrnp + qunp) = Ekmnp + Ekmnp (25)

and therefore

1 1 2 2
Ekmnp = Ekmqrcqrnln Ekmnp = Ekmqrcqrnp' (26)

Now equation (23) and (24) can be written in the form

1 1 1
Ekmnpcnpqrcqrsz = Ekmqrcqrst see e (27)

Multiplying the second equation (23) with E,, and using equation (26) there follows
1 2
Ekmannpqr =0 (28)

1
This equation—together with equation (15)—is sufficient to calculate the tensors E,,,,

2
and Eypyp if Egyyp 18 known. The tensors ék,,,,,p and ék,,,,,p then can be calculated from (26).
These tensors are separating not only the tensors of strain and elasticity but also the stress
tensor as follows from equations (14)-(16) and equations (20)~26):

1 2 1 1 2 2
Tkim = (llllEkmnp+!/I2Ekmnp)enp’ Tkm = ckmnp‘cnp7 Tkm = ckmnp‘cnp~ (29)
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Using equations (12), (20), (21) and (23) the invariant W+ W = Tymeim can be written in the
form

1 2 1 2 1 2
TimCrm = (’J’ 1 Ekmnp + szkmnp) (Cnpqr + Cnpqr) (Ckmst + Ckmst)eqrest . {30)

The identity with the right hand side of equation (18} leads to the conditions

1 2 2 1
Ekmnpénpqr%kmsr = 07 Ekmnpcnpqrckms! = 0, (31)
or using (26) and (27)
Ekmnpénpqrékmst = 0. (32)

This result becomes ldentxcal with the right hand equations (23) and (24) in regard to the

symmetry conditions of Ekmnp and E,mp
In the special case of isotropy the tensors of rank four are combinations of Kronecker

symbols. With G = E/(2+2v) as shear modulus and 1/v as Poisson’s ratio they can be
represented in the form:

1 1
GEkmnp 6kn6mp+ 5kp5mn—%‘5km5np
12 2(1+v)

- = 33
G kmnp 3(1__2‘;)5&”5“1:’ ( }

ékmnp = aéknamp + akpémn) _%ékménp)

2
1
Comnp = Iéknémp .

The tensors of rank four are represented in the Tables 1-5 for isotropy. As can be seen
the conditions (23)}{31) are satisfied.

For anisotropy the Tables 6--10 represent a numerical example (4 being a constant
factor). As can be checked easily the conditions (23)~(31) are satisfied.

For reversible deformations the strain energy potential exists and the energy density
parts W, and W,, the parts W, and W, of the complementary energy density and the

TABLE |. THE TENSORS OF RANK FOUR FOR ISOTROPY:
1

EaEkmnp
np
11 12 22 23 33 31
km
I—v v v
it Q - Q 4]
1—2v 12y 1—2v
12 0 3 0 0 0 0
. 11—
2 : 0 O 0
1-2» 1 -2y 1—2v
23 0 0 0 i Q 0
v v I—v
33 P 0 - 0
1-2v 1-2v 1—2v 0

31 0 0 0 0 0

N
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TABLE 2. THE TENSORS OF RANK FOUR FOR ISOTROPY :

H. NEUBER

I 1

26
np
112 22 23 33 3
km

11 i 0 =L 0 =}
12 0 4 0 0 0 0
2 -1 0 3 0 -1 0
23 0 0o 0 0
33 -3 -5 0 i 0
31 0 0 0 0 3

TABLE 3. THE TENSORS OF RANK FOUR FOR ISOTROPY!

1 2
26 kmnp
np
11 12 22 23 33 31
km
I+v I+v I+v
1 B | D | 0
3(t=2v) 3(t—2v) 3(1—2v)
12 0 0 0 0 0 0
L +v I+v I+v
2 T o L o T
3(1—-2v) 3(1-=2v) 3(1-2v)
23 0 0 0 0 0 0
IL+v I+v I+v
33 ! 0 A S
3(1—-2v) 3(1—2v) 3(1-2v)
31 0 0 0 0 0 0

TABLE 4. THE TENSORS OF RANK FOUR FOR ISOTROPY :
1

Ckmnp

np
11 12 22 23 33 31

km
11 2 0 L 0o -1 0
12 0 3 0 0 0 0
22 -1 0 : 0 —L 0
23 0 0 0 3 0 0
33 1 0 -1 0 : 0
31 0 0 0 0 3
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TABLE 5. THE TENSORS OF RANK FOUR FOR ISOTROPY :
2

Ckmnp

np

o122 23 033 M

km

11 {1 0o § 0 3 0
12 6 0 o o 0 0
2 16 4 0 § 0
23 0 0 0 0 0 0
33 L0 4 0 o0
3 6 0 0 0 0 0

TABLE 6. THE TENSORS OF RANK FOUR FOR AN

EXAMPLE OF ANISOTROPY: AEiuunp

np
11 12 2 23 33 31

km

1 16 0 —4 0 0

12 0 11 0 5 0 2
22 -4 0 4 0 6

23 0 S 0 3 0 -2
33 0 0 6 0 12 0
31 0 2 0 -2 0 12

TaBLE 7. THE TENSORS OF RANK FOUR FOR AN
1

EXAMPLE OF ANISOTROPY: AE, .,

np
12 22 23 33 31
km

11 4 0 2 0 6 0
12 0 9 0 3 Q 6
22 2 0 1 0 3 0
23 0 3 0 1 0 2
33 6 0 3 0 9 Q0
31 0 6 0 2 0 4
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TABLE 8. THE TENSORS OF RANK FOUR FOR AN EXAMPLE OF
2

ANISOTROPY : AEy,,.,

np

i1 i2 22 23 33 31
km
11 12 0 —6 0 -6 0
12 0 2 0 2 —4
22 -6 Q 3 0
23 0 2 ¢} 2 0 —4
33 -6 0 3 0 3
31 0 -4 0 —4 0 8

TABLE 9. THE TENSORS OF RANK FOUR FOR AN EXAMPLE
1
OF ANISOTROPY © Cippnpy

np
11 12022 23 3 3
km
11 % 0 3 0 3 0
12 0 3 0 -4+ 0 3
2 i 0 i 0 0 0
23 0 -+ 0 i o i
33 3 0 0 0o 3 0
31 0 o0 100 %

TasLE 10. THE TENSORS OF RANK FOUR FOR AN EXAMPLE OF
2
ANISOTROPY ! Ctpnp

np

il 12 22 23 33 31
km
11 u 0 -} 0 -3 0
12 0 0 0 i 0 —%
22 -3 0 ) 0 0 0
23 0 i 0 -4 0 —i
33 -3 0 0 0 i 0
31 0 -4 0 —3 0 &
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corresponding parts W, and W, of the quasi-Hookean strain energy density W satisfy
the following relations which are quite analogous to (5(10):

i 101 2 2 2
W, 1 }1,’ 1
HL = IEkmnpekmenps H2 — §Ekmnpekmenpa

1 1 2 2
TimO€hm = W10 Wy, TimOum = W20 Wp2,

(34)
ékméékm = 1 0Wy +2Wy, 0¥, ékmélzcm o,
‘f’l = dW;/dWy,, 2= d"Vz/dWHz,
or, if i/, is a known function of W, and ¥, a known function of W,,
W,y d# Wy dQ
e I 35
th n=0 ¥y e =0 ¥2(0) 33)

As is to be seen from equation (32), for isotropy the tensors of stress and strain are to be
separated in deviators and spherical tensors. This result was already derived by Kauderer
[1, 11] and more generally by Wegner [16].

Since the state of nonlinear antiplane shear for isotropy [2, 6, 12, 13, 17, 18, 26, 27, 31]
only contains deviatoric components of the stress and strain tensors, it can be represented
by means of the one- or two-invariants relations (in the second case all terms with index 2
vanish). The advantages of the here derived stress—strain relations with two invariants are
to be seen in two facts:

{1) The nonlinear behaviour can be represented by the two one-parametric functions

Yy = (Wyy) and ¢y = §o(Wpa)-

(2) The tensors of anisotropic elasticity are determined by the linear elastic behaviour.

If the possibility of energy separation is not assumed, a more general two-invariants
stress—strain law can be derived from the results of the next chapter by putting
$3=¢3=D3=D;=0.

For irreversible deformation the relations derived here can also be used, but then ¥,
and ¥, can be any functions of the three invariants given in equations (11) and (13).

5. THE NONLINEAR ANISOTROPIC STRESS-STRAIN LAW
WITH THREE INVARIANTS

For reversible anisotropic deformation in the general case the strain energy potential
density exists and depends on the three invariants:

W= W(¢l s Cbz; ¢3)~ (36)
Then from (2) it follows

Tm = . D,0¢,/0e., with D, = oW/d¢, (37)

and therefore

aD;/¢, = dD,/d¢,, A u=123. (38)
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The three invariants may be introduced again in the suitable form (11) or (13).
From equations (36) and (11) the stress-strain relations for anisotropy are obtained in the
following form:

Tkm = DlAkm + 2DZBkmnpenp + 3D3Ckmnpqrenpeqr' (39)

For reversible isotropic deformation the corresponding equations are obtained with
regard to equation (13):

Tom = Dlékm+2Dzekm+3D3quemq. (40)

For describing the behaviour of materials according to special experimental results
sometimes the complementary energy density instead of the strain energy density may be
useful. Introducing the complementary energy density the second equation (2) must be
applied and—consequently—in all equations of this chapter W, ¢,, D, , 4,,,.. Biounps Cromnpar-
Tum and €, are to be replaced by W, ¢, D;, Aiy, Bimnps Crmnpgrs €km and Ty, respectively.
The single paths are in complete analogy to the foregoing procedure ; therefore the resuit
may be represented without further comments:

For reversible anisotropic deformation

W = W(qEI? 52 » %3)’
Com = Z D, 8¢;/0t,, with D, = oW/dd,,

and therefore 6D,/0¢, = éD,/0¢,,

1 = AkmTims @2 = Ekmnpfkmfnp~ ¢3 = (_:kmnpqﬂnpfqr»
€im = D1 Apn+2D3BynyTup + 3D 3Chmnpar TnpTar- (41)
For reversible isotropic deformation :
51 = Tkk» 2 = TkmThms by = TkmTmgTrq
im = D104 +2D 374+ 3D 3744y, dD;/0¢, = 8D,/0¢,. (42)

For irreversible deformation the factors D, and D,, respectively, are independent
functions of the three invariants. If D, is proportional to ¢, D, is constant and D, equal to
zero, then Hooke’s law is realised (also if D, is proportional to ¢,, D, is constant and D,
zero). If D, is a linear combination of the three invariants and D, and D; are constants
(irreversible deformation) the isotropic relations correspond to those used by Evans and
Pister [23] and Orthwein [30].

6. THE YIELD CONDITION AND THE INCREMENTAL STRESS-STRAIN
LAW

Using the invariants ¢,, ¢,, ¢, the yield condition for anisotropy can be established
in the following form:
F (T8 $2,b3) = const. {43)

with ¢, ¢,, ¢, according to equation (41). If the deformation is assumed to be elastic—
plastic in the usual sense the increment of the strain tensor can be written in the following
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form Sty = HimpdTpg+ Lind A (44)
with

A=1,2,3 pg\v"%¥a km, A=1,2,3 % X km pq n=1,2,3 A " km pa
and

— O 09, (46)
" 1,2,3 05 OThm

This representation includes the known yield conditions and incremental stress-strain
laws (see Refs. 3-5, 8-11, 14, 16, 19, 20, 23, 30 and 32).

If the influence of the third invariant can be neglected the terms with @5 are to be
eliminated. Following the procedure of chapter 4 the quasi-Hookean energy densities,
written as bilinear functions of the stress components, can be introduced instead of ¢
and ¢, as governing invariants: ¢, = Wy,, ¢, = Wj,. Then there follows W = W, (W)
+ Wo(Wy2) , 1 = x1(Wa1)+ x2(Wy2) = const.

Ly
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AbcTpakr—I1onydaroTcs HEJIMHEHHbIC 3aKOHb! HATIPAXKEHNE-TehOPMALMS IUIA aHU3IOTPOITHRIX MAaTepHANIoR
HA OCHOBE OJIHOTO, JIBYX W TPEX WHBAPHAHTOR.



